738 research outputs found

    Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks

    Full text link
    Fluorescence microscopy images usually show severe anisotropy in axial versus lateral resolution. This hampers downstream processing, i.e. the automatic extraction of quantitative biological data. While deconvolution methods and other techniques to address this problem exist, they are either time consuming to apply or limited in their ability to remove anisotropy. We propose a method to recover isotropic resolution from readily acquired anisotropic data. We achieve this using a convolutional neural network that is trained end-to-end from the same anisotropic body of data we later apply the network to. The network effectively learns to restore the full isotropic resolution by restoring the image under a trained, sample specific image prior. We apply our method to 33 synthetic and 33 real datasets and show that our results improve on results from deconvolution and state-of-the-art super-resolution techniques. Finally, we demonstrate that a standard 3D segmentation pipeline performs on the output of our network with comparable accuracy as on the full isotropic data

    Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging

    Full text link
    Intracellular movement of vesiculated pigment granules in angelfish melanophores is regulated by a signalling pathway that triggers kinesin and dyneinlike microtubule motor proteins. We have tested the relative importance of intracellular Ca2+ ([Ca2+]i) vs cAMP ([cAMP]i) in the control of such motility by adrenergic agonists, using fluorescence ratio imaging and many ways to artificially stimulate or suppress signals in these pathways. Fura-2 imaging reported a [Ca2+]i elevation accompanying pigment aggregation, but this increase was not essential since movement was not induced with the calcium ionophore, ionomycin, nor was movement blocked when the increases were suppressed by withdrawal of extracellular Ca2+ or loading of intracellular BAPTA. The phosphatase inhibitor, okadaic acid, blocked aggregation and induced dispersion at concentrations that suggested that the protein phosphatase PP-1 or PP-2A was continuously turning phosphate over during intracellular motility. cAMP was monitored dynamically in single living cells by microinjecting cAMP-dependent kinase in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine respectively (Adams et al., 1991. Nature (Lond.). 349:694-697). Ratio imaging of F1CRhR showed that the alpha 2-adrenergic receptor-mediated aggregation was accompanied by a dose-dependent decrease in [cAMP]i. The decrease in [cAMP]i was both necessary and sufficient for aggregation, since cAMP analogs or microinjected free catalytic subunit of A kinase-blocked aggregation or caused dispersal, whereas the cAMP antagonist RpcAMPs or the microinjection of the specific kinase inhibitor PKI5-24 amide induced aggregation. Our conclusion that cAMP, not calcium, controls bidirectional microtubule dependent motility in melanophores might be relevant to other instances of non-muscle cell motility

    Development of fluorescent probes for bioimaging applications

    Get PDF
    Fluorescent probes, which allow visualization of cations such as Ca2+, Zn2+ etc., small biomolecules such as nitric oxide (NO) or enzyme activities in living cells by means of fluorescence microscopy, have become indispensable tools for clarifying functions in biological systems. This review deals with the general principles for the design of bioimaging fluorescent probes by modulating the fluorescence properties of fluorophores, employing mechanisms such as acceptor-excited Photoinduced electron Transfer (a-PeT), donor-excited Photoinduced electron Transfer (d-PeT), and spirocyclization, which have been established by our group. The a-PeT and d-PeT mechanisms are widely applicable for the design of bioimaging probes based on many fluorophores and the spirocyclization process is also expected to be useful as a fluorescence off/on switching mechanism. Fluorescence modulation mechanisms are essential for the rational design of novel fluorescence probes for target molecules. Based on these mechanisms, we have developed more than fifty bioimaging probes, of which fourteen are commercially available. The review also describes some applications of the probes developed by our group to in vitro and in vivo systems

    Changes in intracellular ion activities induced by adrenaline in human and rat skeletal muscle

    Get PDF
    To study the stimulating effect of adrenaline (ADR) on active Na+/K+ transport we used double-barrelled ion-sensitive micro-electrodes to measure the activities of extracellular K+ (aKe) and intracellular Na+ (aNai) in isolated preparations of rat soleus muscle, normal human intercostal muscle and one case of hyperkalemic periodic paralysis (h.p.p.). In these preparations bath-application of ADR (10−6 M) resulted in a membrane hyperpolarization and transient decreasesaKe andaNai which could be blocked by ouabain (3×10−4 M). In the h.p.p. muslce a continuous rise ofaNai induced by elevation ofaKe to 5.2 mM could be stopped by ADR. In addition, the intracellular K+ activity (aKi), the free intracellular Ca2+ concentration (pCai) and intracellular pH (pHi) were monitored in rat soleus muscle. During ADRaKi increased, pHi remained constant and intracellular Ca2+ apparently decreased. In conclusion, our data show that ADR primarily stimulates the Na+/K+ pump in mammalian skeletal muscle. This stimulating action is not impaired in the h.p.p. muscle

    Some Secrets of Fluorescent Proteins: Distinct Bleaching in Various Mounting Fluids and Photoactivation of cyan fluorescent proteins at YFP-Excitation

    Get PDF
    Background
The use of spectrally distinct variants of green fluorescent protein (GFP) such as cyan or yellow mutants (CFP and YFP, respectively) is very common in all different fields of life sciences, e.g. for marking specific proteins or cells or to determine protein interactions. In the latter case, the quantum physical phenomenon of fluorescence resonance energy transfer (FRET) is exploited by specific microscopy techniques to visualize proximity of proteins.

Methodology/Principal Findings
When we applied a commonly used FRET microscopy technique - the increase in donor (CFP)-fluorescence after bleaching of acceptor fluorophores (YFP), we obtained good signals in live cells, but very weak signals for the same samples after fixation and mounting in commercial microscopy mounting fluids. This observation could be traced back to much faster bleaching of CFP in these mounting media. Strikingly, the opposite effect of the mounting fluid was observed for YFP and also for other proteins such as Cerulean, TFP or Venus. The changes in photostability of CFP and YFP were not caused by the fixation but directly dependent on the mounting fluid. Furthermore we made the interesting observation that the CFP-fluorescence intensity increases by about 10 - 15% after illumination at the YFP-excitation wavelength – a phenomenon, which was also observed for Cerulean. This photoactivation of cyan fluorescent proteins at the YFP-excitation can cause false-positive signals in the FRET-microscopy technique that is based on bleaching of a yellow FRET acceptor.

Conclusions/Significance
Our results show that photostability of fluorescent proteins differs significantly for various media and that CFP bleaches significantly faster in commercial mounting fluids, while the opposite is observed for YFP and some other proteins. Moreover, we show that the FRET microscopy technique that is based on bleaching of the YFP is prone to artifacts due to photoactivation of cyan fluorescent proteins under these conditions

    “cAMP Sponge”: A Buffer for Cyclic Adenosine 3′, 5′-Monophosphate

    Get PDF
    Background: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP). Methods/Principal Findings: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIβRI\beta of protein kinase A (PKA). Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named “cAMP sponge”) was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. Conclusions: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events

    Fluorescent Protein-Based Methods for On-Plate Screening of Gene Insertion

    Get PDF
    Unlike the commonly used method of blue-white screening for gene insertion, a fluorescent protein-based screening method offers a gain-of-function screening process without using any co-factors and a gene fusion product with a fluorescent protein reporter that is further useful in cell imaging studies. However, complications related to protein-folding efficiencies of the gene insert in fusion with fluorescent protein reporters prevent effective on-plate bacterial colony selection leading to its limited use.Here, we present three methods to tackle this problem. Our first method promotes the folding of the gene insert by using an N-terminal protein such as calmodulin that is well folded and expressed. Under this method, fluorescence was increased more than 30x over control allowing for enhanced screening. Our second method creates a fluorescent protein that is N-terminal to the gene upon insertion, thereby reducing the dependency of the fluorescent protein reporter on the folding of the gene insert. Our third method eliminates any dependence of the fluorescent protein reporter on the folding of the gene insert by using a stop and start sequence for protein translation.The three methods together will expand the usefulness of fluorescence on-plate screening and offer a powerful alternative to blue-white screening

    Chemical Clearing and Dehydration of GFP Expressing Mouse Brains

    Get PDF
    Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4) can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9) is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques

    LED Arrays as Cost Effective and Efficient Light Sources for Widefield Microscopy

    Get PDF
    New developments in fluorophores as well as in detection methods have fueled the rapid growth of optical imaging in the life sciences. Commercial widefield microscopes generally use arc lamps, excitation/emission filters and shutters for fluorescence imaging. These components can be expensive, difficult to maintain and preclude stable illumination. Here, we describe methods to construct inexpensive and easy-to-use light sources for optical microscopy using light-emitting diodes (LEDs). We also provide examples of its applicability to biological fluorescence imaging

    Practical three color live cell imaging by widefield microscopy

    Get PDF
    Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope
    corecore